Objectives:

- State the Fundamental Theorem of Calculus.
- Apply the Fundamental Theorem of Calculus to work with functions defined as integrals.

Example 1 If $g(x)=\int_{1}^{x} t^{3} d t$, find a formula for $g(x)$ that doesn't involve an integral and calculate $g^{\prime}(x)$.

The Fundamental Theorem of Calculus (Part I)

If f is \qquad , then the function g defined by

$$
g(x)=
$$

is an antiderivative of f, that is, \qquad .

Example 2 Find the derivative of the function $g(x)=\int_{0}^{x} \sqrt{1+t^{2}} d t$.

The Fundamental Theorem of Calculus

Suppose f is continuous on $[a, b]$.

1. If $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$.
2. $\int_{a}^{b} f(x) d x=F(b)-F(a)$, where F is any antiderivative of f, that is $F^{\prime}=f$.

For each of the following functions, find the derivative.

1. $g(x)=\int_{1}^{x} \frac{1}{t^{3}+1} d t$
2. $f(x)=\int_{1}^{x^{4}} \sec (t) d t$
3. $r(y)=\int_{2}^{y} t^{2} \sin (t) d t$
4. $h(x)=\int_{2 x}^{3 x} \frac{u^{2}-1}{u^{2}+1} d u$
5. $F(x)=\int_{x}^{\pi} \sqrt{1+\sec (t)} d t$
