Objectives:

- State the Fundamental Theorem of Calculus.
- Apply the Fundamental Theorem of Calculus to work with functions defined as integrals.

Example 1 If $g(x) = \int_{1}^{x} t^{3} dt$, find a formula for g(x) that doesn't involve an integral and calculate g'(x).

The Fundamental Theorem of Calculus (Part I)

If f is _____, then the function g defined by

g(x) =

is an antiderivative of f, that is, _____.

Example 2 Find the derivative of the function $g(x) = \int_0^x \sqrt{1+t^2} dt$.

The Fundamental Theorem of Calculus

Suppose f is continuous on [a, b].

1. If
$$g(x) = \int_{a}^{x} f(t) dt$$
, then $g'(x) = f(x)$.
2. $\int_{a}^{b} f(x) dx = F(b) - F(a)$, where F is any antiderivative of f, that is $F' = f$.

For each of the following functions, find the derivative.

1.
$$g(x) = \int_{1}^{x} \frac{1}{t^3 + 1} dt$$
 4. $f(x) = \int_{1}^{x^4} \sec(t) dt$

2.
$$r(y) = \int_{2}^{y} t^{2} \sin(t) dt$$

5.
$$h(x) = \int_{2x}^{3x} \frac{u^2 - 1}{u^2 + 1} du$$

3.
$$F(x) = \int_{x}^{\pi} \sqrt{1 + \sec(t)} dt$$